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Abstract

Co-clustering aims at simultaneously partitioning the rows and columns of a
data table to reveal structures such as homogeneous blocks. The absence of
ground truth in real problems hinders the objective assessment of the compo-
nents of learning algorithms, so that simulated data are particularly worthwhile.
However, their design raise issues that have no equivalent in one-way clustering.
Specifically, the quantification of the intrinsic difficulty of the learning prob-
lem, akin to the Bayes’ error rate in clustering, is problematic, due to the dual
nature of each dimension of the data table. We revisit the fundamentals of co-
clustering by defining appropriate losses, and apply the founding principles of
statistical learning to derive the corresponding Bayes’ rules and risks. Then, we
describe the difficulties related to the estimation of these quantities, which have
received little attention until now in spite of their aftermath in the evaluation
of learning algorithms. Finally, we exemplify the artificial data design process
with latent-block models. We created a repository comprising more than 100
data tables, which is accessible online, thus providing the first publicly available
series of co-clustering problems with assessed intrinsic difficulty for tables of
reals, counts and binary data.

Keywords: Bayes’ risk, co-clustering, latent block model, benchmarking,
simulated data.

1. Introduction

Generally, the evaluation of unsupervised learning techniques on real data is
difficult because there are often several legitimate views on data. For example,
customers may be equally properly categorized from their purchases, residence,
social status, among others. Hence, measuring the relevance of clustering by the
ability to recover one or the other label is not the definitive apposite evaluation
protocol. As a result, artificial data have been a traditional hallmark in the
experimental evaluation of clustering tools. A controlled setup can truthfully
test to what extent a given algorithm is able to retrieve an assumed cluster
structure, by investigating its qualities and defaults in more or less favorable
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cases. Once the practical strengths and limits are well understood, the behavior
on real data becomes easier to foresee and interpret.

A minimalist experimental design for simulation studies in the clustering
framework would consider the following ingredients:

• sample size, that is, the number of lines of the data table;

• dimensionality of the classified vectors, that is, the number of columns of
the data table;

• number of clusters;

• difficulty of the task.

Then, many other configurations may be relevant for the study, according to the
assumptions on the generation process. In this paper, we study the transposition
of the four items mentioned above to co-clustering analysis, and we concentrate
on the last bullet point.

Co-clustering aims at identifying block patterns in a data table, from a
joint clustering of rows and columns. Several variants of this problem have
been proposed under diverse appellations: bi-clustering, cross-clustering, two-
mode partitional, or simultaneous clustering (Banerjee et al., 2007). Block-
clustering organizes simultaneously the rows and columns of the data table to
unveil homogeneous aligned blocks, also called checkerboard structure (Kluger
et al., 2003) or grid clustering (Seldin and Tishby, 2010). This process, which
identifies a pair of partitions in rows and columns, has been studied since 1965
in statistics (Good, 1965), with recent interests in various fields, ranging from
graph analysis (Daudin et al., 2008), machine learning (Banerjee et al., 2007),
data mining (Berkhin, 2006) and genomics (Jagalur et al., 2007).

There is yet no standard benchmark for co-clustering algorithms, as few
freely available real data are amenable to an objective evaluation, due to the
lack of ground truth. As a result, each author proposes his own simulation
protocol for analyzing the strengths and weaknesses of learning algorithms. Re-
producibility is often precluded by the sketchy description of experimental con-
ditions and the absence of online data. Besides, quantitative assessments are
also difficult to appraise due to the heterogeneity of evaluation protocols and
the fact that intrinsic difficulty of the tasks is unknown to the reader.

In this paper, we first look for consensual measures of similarity between
two co-clusterings. We adopt a classification perspective, where the primary
objective is to recover row and column classes. In this framework, the difficulty
of a co-clustering task has still to be defined appropriately. We go back to the
founding principles of statistical learning by defining suitable losses, Bayes’ rules
and risks. Then, we describe our solutions to some of the practical problems
raised by the estimation of these quantities.

We then describe a simulation protocol based on the latent-block generative
model. This model assumes a strong homogeneity within blocks, whose entries
only differ by random fluctuations around a common mode or mean value. Our

2



repository, freely available from http://www.hds.utc.fr/coclustering, in-
corporates more than 100 simulated tables of reals, counts, and binary data. It
can be used for several purposes, such as the analysis of the behavior of estima-
tion algorithms or model selection procedures. To our knowledge, this repository
gathers the first publicly available series of co-clustering problems with assessed
intrinsic difficulty. Furthermore, several plausible “ground truths” are provided
for each data table, in order to account for the diversity of legitimate clusterings
complying with the block-clustering assumptions.

2. Notations

Throughout this paper, we will use boldface lowercase for vectors, boldface
uppercase for matrices, calligraphic uppercases for sets, and medium uppercase
for random variables, whatever their type. The n×d data table to be processed
is denoted X = (xT

1 , . . . ,x
T
n)T, with (xi)j = xij , and xij ∈ X may be a real,

a positive integer or a binary variable. We will systematically use i as a row
index and j as a column index and, when not detailed in sums or products,
i goes from 1 to n and j goes from 1 to d. Column j of X will be denoted
xj , so that X = (x1, . . . ,xm). The row labeling in g groups, which is denoted
z = (z1, . . . , zn), takes its values in Z = {1, . . . , g}n. Similar notations are used
for the column labeling in m groups, with w ∈ W = {1, . . . ,m}d. Probabilities
will be denoted by P(·), expectations by E[·] and probability distributions, on
either discrete or continuous variables by p(·).

3. Primary Definitions

Statistics and machine learning have a long tradition of quantifying the diffi-
culty of learning problems and the achievements of learning algorithms by some
objective criterion. The paramount framework for this evaluation is Bayes’
decision theory, where the discrepancy between observations and predictions is
measured by a loss, and where the ultimate goal of learning is to find the predic-
tion rule with minimal risk, that is, with minimum expected loss. The difficulty
of the learning problem itself may then be characterized by this Bayes’ risk.

3.1. Classification Perspective

The numerous approaches to co-clustering may be split into two broad cat-
egories:

• model based, where mixture models and variants thereof use latent vari-
ables to define the row and column clusters that form block clusters (Go-
vaert and Nadif, 2003; Shan and Banerjee, 2008; Wyse and Friel, 2010);

• reconstruction based, where the problem is formalized as a matrix approx-
imation problem, using different sets of constraints for the approximation
and dissimilarity measures for the reconstruction (Hartigan, 1972; Gov-
aert, 1977, 1995; Banerjee et al., 2007).
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The definition of relevant losses is an issue that has mainly been addressed
from a reconstruction perspective, by measuring the discrepancy between the
original data table and its summary provided by clustering (Hartigan, 1972;
Govaert, 1995; Banerjee et al., 2007). This reconstruction-based viewpoint has
the advantage of measuring goodness-of-fit from what is actually observed, that
is, the data table, but it has two drawbacks: first, it is based on generalized
inertia criteria, which are ancillary to the grouping of rows and columns itself;
second, it requires to posit a relevant distance between matrices.

In this paper, we adopt the classification viewpoint, where losses are de-
fined from the actual partitioning of rows and columns into sub-populations, by
measuring the disagreement between the assignments of rows and columns to
clusters. The main drawback of this viewpoint is to be based on unobserved
quantities (the true row and column class assignments), and its main advantage
resides in its ability to infer a suitable distance between rows and columns from
data.

3.2. Statistical Unit

Before defining the loss incurred by a prediction-observation pair, one has
to define the statistical unit of interest. In standard one-way clustering, the
training set is usually represented as a data table, where each row represents
an object measured on a set of variables, and each column represents a variable
recorded on a set of objects. The objective of clustering is stated in terms
of objects, that is, rows of the data table, which are the statistical units of
interest. In co-clustering, the aim is to partition the data table into homogeneous
blocks of rows×columns. These subtables belong to the Cartesian product of
the sets of rows and columns, and they define a lattice on the whole table, with
interdependencies between subtables, so that the relevant statistical unit is the
data table itself.

3.3. Loss Functions

Considering the data table as a whole, several loss functions may be defined
for measuring the discrepancy between the true label (z,w) and the decision
(z′,w′). Some criteria, based either on the Rand index or mutual information
have been specifically tailored for clustering (Meilă, 2007), and could also be
used to evaluate co-clustering. Here, we will only develop our arguments on
very simple general-purpose classification losses, to focus on some peculiar issues
related to co-clustering itself.

A first loss considers that the overall table assignment is either wrong or
correct:

`full((z,w), (z′,w′)) = 1− δ(z,w),(z′,w′) , (1)

where δ is the Kronecker delta. This loss function only rewards the exact re-
covery of all row and column assignments, and is too stringent for evaluation
purposes in the most common cases where the membership of some rows or
columns is ambiguous. In these situations, we want a more graded reward when
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approaching correct decisions, and a reasonable loss is the ratio of misclassified
entries in the data table:

`item((z,w), (z′,w′)) = 1− 1

nd

∑
i,j

δ(zi,wj),(z′i,w
′
j)

(2)

= `row(z, z′)︸ ︷︷ ︸
1− 1

n

∑
i δzi,z′i

+ `col(w,w
′)︸ ︷︷ ︸

1− 1
d

∑
j δwj,w

′
j

−`row(z, z′) `col(w,w
′) , (3)

where `row and `col are the row and the column error rate respectively. Note
that this loss differs from the row and column classification error that are some-
times used for evaluating co-clustering (see for example Shan and Banerjee,
2008). This loss may incorporate weights to penalize some particular errors
more heavily, and it may also serve as a basis for computing more demanding
criteria such as precision, recall, area under the receiver operating characteristic,
and so forth. We will not pursue in these directions where the standard tools
developed for classification apply, and will instead elaborate on the two basic
losses (1) and (2) in the co-clustering framework. Finally, though criteria based

on the estimated probabilities P̂(Z = z,W = w|X) may also be relevant in a
classification viewpoint of co-clustering, we will not elaborate on this line since
computing probabilities such as P(Z = z,W = w|X) or P(Zi = zi,Wj = wj |X)
is intractable (more details will be given in the following sections).

3.4. Bayes’ Classifiers

The Bayes’ classifier associated to the losses of Section 3.3 is a function from
Xn×d to Z ×W. For `full, it is defined as follows:

hfull(X) = argmin
(z,w)

E [`full((Z,W ), (z,w))|X]

= argmax
(z,w)

P(Z = z,W = w|X) , (4)

that is, the Bayes’ classifier for loss `full (1) is the maximum a posteriori (MAP)
classifier. For `item, the Bayes’ classifier is defined likewise yielding:

hitem(X) = argmax
(z,w)

∑
i,j

P(Zi = zi,Wj = wj |X) . (5)

Note that there is no reason for the two decision rules to agree: the first one
picks the most probable label among the gn×md possible ones, while the second
one is only sensitive to the n×g×d×m marginal probabilities1. In general, the
rules will differ, a notable exception being the vacuous block-clustering problem
where all conditional label variables {(Z1|X), . . . , (Zn|X), (W1|X), . . . , (Wd|X)}
are independent.

1Note however that there is no direct way of computing these marginals, which should thus
be evaluated by summing the entries of the original gn ×md table.
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3.5. Bayes’ Risks

The Bayes’ risk is the expected loss for the Bayes’ classifier. In classification,
it represents the minimal expected loss incurred when classifying an arbitrary
“test” example, that is, the smallest expected generalization error among all
possible classification rules. In co-clustering, the Bayes’ risk is transcribed like-
wise, by the generalization performance of the Bayes’ classifier on “test” data
tables.

While the generalization to arbitrary examples is typically desired when
establishing a decision rule, generalizing to other tables is usually not intended
in the co-clustering framework as there is commonly a single table of interest.
When generalizing is mentioned, it is more customarily related to the clustering
of additional rows or columns of the table under study. Hence, the usual notion
of Bayes’ risk is not appropriate in co-clustering, and conditioning the risk on
the observed table is more sensible. In this respect, co-clustering is similar to a
fixed design classification experiment that would aim at inferring the labels on
a fixed collection of data points.

In what follows, we will mostly refer to the conditional risk defined from the
loss `item:

ritem(z,w|X) = E[`item((Z,W ), (z,w))|X] , (6)

where the reference to X will be dropped when clear from the context. The
conditional Bayes’ risk will then be denoted ritem(hitem(X)).

At this point, we have to make two clarifying points. First, the parallel with
fixed design does not imply that modeling data tables by a random variable is
inappropriate: the use of a probabilistic model for non-repeatable events is per-
fectly legitimate out of an exclusively frequentist interpretation of probabilities.
Second, as the inadequacy of the Bayes’ risk stems from considering the data
table as the statistical unit, we would like to stress that other choices would
lead to further problems. As generalization usually means clustering new rows
or columns of the table, one could argue that the latter are the relevant statis-
tical units, but adding new rows or columns respectively alters the column and
row clustering, because the number of rows and columns respectively define the
dimension of the space where column and row clustering are performed. The
duality of rows and columns and the one of examples and variables imply that
a co-clustering problem is characterized by the size of the data table. Further
issues related to the size of the data table will be discussed in Section 4.5.

4. Practicalities

In this section, we address the issues related to the computation of the quan-
tities introduced in the previous section, and we discuss other topics pertaining
to the difficulty of co-clustering tasks: global and row and column performances
and table size. This discussion is illustrated with examples where data tables are
generated from latent-block models that will be introduced later in Section 5.
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4.1. Working Assumptions

The loss functions presented in Section 3.3 are bi-variate functions of pairs
of row and column labels. Their minimization is hard, since they require an
evaluation of all possible labels on the whole table. For data tables of size n×d
considering g row and m column labels, we thus have to consider the whole
discrete label domain of cardinality gnmd. This tractability issue has obviously
some outcomes regarding the learning procedures that are out of the scope of
the present paper, but it also impacts the evaluation of the Bayes’ classifiers and
Bayes’ risks, which cannot be computed in polynomial time if no decomposition
of p(z,w|X) is available. We state below our two main working assumptions.
They only partially satisfy our needs regarding the computation of the quantities
introduced in the previous section, but we believe that they are mild enough to
be realistic in many real applications.

The first assumption extends the usual assumption of one-way clustering of
prior independence of classes to the joint labeling of rows and columns. The
second one states that the conditional distribution of the data table given its
row and column labels factorizes as the conditional distribution of its rows, and
also as the conditional distribution of its columns. These assumptions ensure
that modelling is insensitive to row and column permutations, which is a usual
desideratum when there is no structural linkage between rows and columns.
Furthermore, once postulated on the whole table X, they apply to any subtable
constructed from an arbitrary row and column extraction of X.

Assumption 1. All labels are independent:

p(z,w) =
∏
i

p(zi)
∏
j

p(wj) .

This assumption has two notable corollaries, namely:

1. the row labels and the column labels are independent:

p(z) =
∏
i

p(zi)

p(w) =
∏
j

p(wj) ;

2. the row and column labels are also jointly independent:

p(z,w) = p(z) p(w) .

The first corollary of Assumption 1 corresponds to the independence assumption
of the one-way clustering of rows and columns. The second corollary regarding
the mutual independence of row and column labels may be misinterpreted: we
stress here that the unconditional independence of Z and W does not imply their
conditional independence knowing the data, that is p(z,w|X) 6= p(z|X) p(w|X).
For example, in market analysis, consumers and product segments can be consid-
ered as independent variables, but the purchase of a given product may convey
some information about the buyer.
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Assumption 2. Given the column labeling, the conditional distributions of rows
given their labels factorize. Correspondingly, given the row labeling, the condi-
tional distributions of columns given their labels factorize:

p(X|z,w) =
∏
i

p(xi|zi,w)

=
∏
j

p(xj |z, wj) .

Hence, co-clustering a data table amounts to clustering its rows and its
columns. Two-way clustering then results from partial label sharing, whereby
dependencies are introduced between rows and columns: all row labels (zi,w)
share the same w, and all column labels (z, wj) share the same z.

4.2. Computing Bayes’ rules

The Bayes’ classifiers are essential elements in the design of a simulation
protocol, since they assess the intrinsic difficulty of a given problem. Equiva-
lently, they represent ultimate references for the classifiers estimated by learning
algorithms.

Proposition 1. Under Assumptions 1 and 2, we have:

p(z|w,X) =
∏
i

p(zi|w,xi)

p(w|z,X) =
∏
j

p(wj |z,xj) .

The proofs follow from a few lines of algebra.

Proposition 1 is not sufficient for the direct computation of the MAP classi-
fier hfull(X), but it allows for an iterative optimization scheme alternating the
optimization with respect to row and label classes:

Algorithm 1: Approximation of hfull(X)

input : distribution parameters θ, table X, labels (z0,w0)

output: h̃full(X) = (z̃, w̃)

initialize (z̃, w̃)←− (z0,w0), (z0,w0)←− (0,0)

while (z̃, w̃) 6= (z0,w0) do
(z0,w0)←− (z̃, w̃)
z̃ ←− argmaxz p( z |w̃,X;θ)1

w̃←− argmaxw p(w|z̃ ,X;θ)2

Steps 1 and 2 of the algorithm maximize p(z,w|X) with respect to z and
w respectively. Thanks to Proposition 1, both steps decompose as n and d
maximizations with respect to g andm discrete values. The convergence towards
a local minimum in finite time follows from the strict increase of p(z,w|X),
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which is trivially upper bounded by 1, and the finite number of configurations.
In the following experiments, convergence was always reached in less than ten
iterations (typically in two–three iterations), and the final solution was stable
with respect to initialization in terms of complete data likelihood p(z̃, w̃,X).

The situation is more complex regarding hitem(X), since the maximization of
p(zi, wj |X) has to consider the information conveyed by the whole data table on
the class of its (i, j)th element. Such interdependencies are extremely difficult to
handle globally, and the assumptions that could lead to efficient computations
resembling Algorithm 1 are way too crude. As a result, we will use the output
of Algorithm 1, that is, h̃full(X), as a surrogate for hitem(X).

4.3. Computing the Conditional Risk

The conditional Bayes’ risk, presented in Section 3.5 is defined by a con-
ditional expectation, given the observed table X. Even when the analytical
expression of the joint distribution is known, computing this expectation re-
quires an exponential time since the conditional distribution of labels p(z,w|X)
is characterized by a probability table of size gnmd. It could be estimated by
drawing independent realizations of labels for the observed data table (Z,W |X),
but the available generative models operate the other way round, by drawing
X from the realization (z,w) and additional distribution parameters.

A basic approximation consists in replacing the conditional expectation with
respect to labels by the empirical distribution, that is, using the generated
partition, say (z0,w0). More refined procedures draw labels from p(z,w|X)
by Markov chain Monte Carlo. Our working assumptions allow for an efficient
blockwise implementation of Gibbs sampling:

Proposition 2. Let z\i denote the vector z deprived from its ith component,
Assumptions 1 and 2 imply:

p(zi|z\i,w,X) = p(zi|w,xi)
p(wj |z,w\j ,X) = p(wj |z,xj) ,

The proofs follow from a few lines of algebra.

Hence, the Gibbs sampler simply iterates the generation of n and d indepen-
dent categorical variables with respectively g and m outcomes. Note that there
is no “label switching” problem in this process, since the sampler uses the true
parameters of the distribution.

Figure 1 illustrates that the apparent error rate may be extremely variable,
and that averaging errors from many Gibbs samples has then a dramatic stabi-
lization effect on the evaluation measure. The right-hand-side histogram sum-
marizes the differences between the apparent error rate of the MAP classifier2

`item((z0,w0), h̃full(X)), where the labels (z0,w0) have actually been used to

generate X, and the estimation of the conditional risk ritem(h̃full(X)) provided

2More precisely, the classifier supplied by Algorithm 1.
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Figure 1: Apparent error rate (left) and differences between apparent error rate and con-
ditional risk (right) for the MAP classifier on 50 × 50 data tables generated from the same
distribution, with 3 × 3 clusters, and estimated (unconditional) Bayes’ risk of 20%.

by averaging 2,000 Gibbs samples3. We see that the order of magnitude of the
differences is comparable with the quantities themselves. Hence, the evaluation
from the sole labels that generated a data table can be extremely noisy, and
considering a large set of possible labels has then a noticeable stabilizing effect.
For each data table provided in our repository, we included 2,000 such Gibbs
labels for enabling accurate evaluations.

4.4. Controlling the Conditional Risk

The spread of the distribution of the apparent error rate displayed in the
left-hand-side of Figure 1 is not only due to the variability with respect to labels.
The histogram in the left-hand-side of Figure 2 testifies that remarkable spread
in performances may still be observed for the conditional risk, which integrates
error over the label distribution.

Hence, instability also arises from having a unique observed data table.
Even when the distribution is fixed, there are some favorable draws, with well-
separated data, and much more difficult ones, with more scatter, because the
amount of available data is not large enough to be representative of the whole
distribution. This phenomenon, which can also be observed in simple one-way
clustering when the evaluation is based solely on the available sample, is allevi-
ated as the table size grows, as shown in the right-hand-side of Figure 2, where
the size of the error bars decreases with the table size.

For our purpose, these observations imply that the probability distribution
of data tables is not specific enough to characterize their intrinsic co-clustering
difficulty. We thus have to assess the conditional risk, at the level of each table.
Our simulation protocol relies on a form of rejection sampling strategy that
enables a precise control of the difficulty of each data in our repository.

3The standard error of this estimation was empirically estimated to be below 1%.
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Figure 2: Conditional risk computed for square data tables (m = n) with 3×3 clusters whose
entries are generated from the same distribution: left, histogram computed from 50×50 tables;
right, average loss and interquartile range vs. table size.

4.5. Table Size and Separability

Co-clustering is subject to an unusual phenomenon that is clearly on view
in the right-hand-side of Figure 2: for a given distribution on the entries of the
table, the expected loss decreases as the table size grows. We stress that there
is no learning process in the curve displayed; the loss is computed for the MAP
decision rule, using the knowledge of the true distribution. Hence, the error
decrease reflects a property of the table distribution: its size plays an important
role in setting the Bayes’ risk, that is, the intrinsic difficulty of the task. This
is in contrast with most learning scenarios, where more data usually leads to
better estimation performance, but does not impact the Bayes’ risk.

To understand this phenomenon, consider the representation of a n×d table
as n d-dimensional vectors. When the distribution of the vector entries differ
(that is, when the row clusters differ), the overall dissimilarity between vectors
will grow as d grows. Figure 3 displays the principal components of such vectors,
extracted from two tables with d = 50 in the left plot and d = 500 in the right
plot. The distribution describing the classes and their probabilities is identical
in both plots, but while the clusters in dimension d = 50 are highly overlapping,
they are well separated in d = 500.

Figures 2 and 3 illustrate a systematic but little known property of block-
clustering: the distribution of the table entries being fixed, the Bayes’ risk
decreases with the table size. More formal arguments, already developed for
the more constrained stochastic block model (Celisse et al., 2011), could be
transposed to co-clustering. Intuitively, this decrease can be understood by
considering that the table enlargement in one dimension results in more redun-
dancy in the other dimension.

4.6. Co-Clustering Structure

From an optimization viewpoint, the losses defined in Section 3.3 are objec-
tive functions to be minimized with respect to (z′,w′). This can be rephrased
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Figure 3: Projections of the rows of two data tables on the two first column eigenvectors. The
distribution of table entries is identical, but table sizes differ, with n = 200 rows and d = 50
(left) or d = 500 (right).

as two nested clustering problems, for example through the following decompo-
sition:

min
(z′,w′)∈Z×W

`((z,w), (z′,w′)) = min
z′∈Z

Jz,w(z′) ,

where Jz,w(z′) = min
w′∈W

`((z,w), (z′,w′)) .

The inner optimization problem of evaluating Jz,w is a clustering problem with
respect to columns, and the outer problem of minimizing Jz,w is a clustering
problem with respect to rows. If the joint optimization problem is separable
in z′ and w′, it is not a genuine co-clustering problem, but rather a pair of
clustering problems. This happens in particular if clustering is trivial with
respect to one dimension, in which case co-clustering boils down to standard
one-way clustering with respect to the other dimension. Thus, to ensure the
generation of tables with undisputed co-clustering structure, the row and column
losses defined in (3) should ideally be of the same order of magnitude. This goal
can be achieved either by setting appropriate distribution parameters or by
modifying the relative dimensions of the table.

5. Simulation Protocol

The objective evaluation measures discussed until now require the knowledge
of the true labels, which is rarely available for real data. This section describes
the latent-block model (Govaert and Nadif, 2003), which has been used to gener-
ate the benchmark data of our repository for tables of reals, counts and binary
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entries. Then, we introduce a simulation protocol that provides controls on
the difficulty of the tasks, as demonstrated by the examples provided in the
repository.

5.1. Latent-Block Model

The latent-block model is a probabilistic generative model that generalizes
mixture models (Govaert and Nadif, 2003). With regard to the components
of the distribution, that is, the conditional distributions of the observed data
table given the unobserved row and column labels, the model postulates that
the table entries are independent given the row and column labels:

p(X|z,w) =
∏
i,j

p(xij |z,w) .

Also, conditionally on their row and column labels, all table entries are assumed
to be generated independently from the other labels:

∀(i, j) ∈ {1, . . . n} × {1, . . . , d} , p(xij |z,w) = p(xij |zi, wj) ,

and the within-block entries are identically distributed. As a result, the model
complies with Assumption 2, and the conditional distribution of the data table
given labels is written as follows:

p(X|z,w;α) =
∏
i,j

p(xij |zi, wj ;αziwj
) ,

where αziwj
is the parameter of p(xij |zi, wj), which is only indexed by the row

and columns labels (zi, wj), rendering that all entries belonging to the same
block are identically distributed.

The unconditional distribution of the table is then defined by the mixture
distribution of all components. This mixture complies with Assumption 1 by
supposing the independence of labels, which are furthermore identically dis-
tributed, leading to the following decomposition:

p(X;θ) =
∑

(z,w)∈Z×W

p(z;π) p(w;ρ)
∏
i,j

p(xij |zi, wj ;αziwj
) , (7)

where π = (π1, . . . πg) is the probability of row labels, ρ = (ρ1, . . . , ρm) is the
probability of column labels, α = (αz1w1

, . . . ,αzgwm
) is the set of parameters

describing the component distributions, and θ = (π,ρ,α, n, d) is a shortcut
notation for all parameters. While the number of row and column classes is
implicit in θ through π and ρ, the table size, which appears in (7) through the
definition of (Z,W) has to be included for completeness. Though not enforced
by the model, the form of p(xij |zi, wj ;αziwj

) is typically identical for each block,
such as Gaussian for data tables of reals (Govaert and Nadif, 2003), Poisson
for contingency tables (Govaert and Nadif, 2007), or Bernoulli for binary data
(Govaert and Nadif, 2008).
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5.2. Simulation Details

Our simulation protocol consists in four steps. In the first step, one chooses
the type of simulated data table (real, count, or binary), which will result in
selecting an adequate distribution for the table entries (respectively Gaussian,
Poisson, or Bernoulli). Additionally, one chooses the size of the table n × d,
the number of row and column clusters g×m, and the difficulty of the task, by
setting the conditional risk ritem(h̃full(X)).

In the second step, the distribution parameters π, ρ, and α are generated,
with slight modifications according to the type of data. Some options allow
to limit the flexibility of the model, for example by considering identical class
probabilities or dispersion parameters across blocks. The g×m means or modes
of the block entries are roughly symmetrically located in order to have similar
overlaps throughout the data table in rows and columns. For Gaussian and
Bernoulli distributions, the dispersion parameters (that is, variances and devi-
ations from the mode) are randomly chosen with the same order of magnitude.

In the third step, the parameters α are scaled to calibrate the Bayes’ risk
at the prescribed conditional risk value. A series of 200 data tables is gener-
ated by first drawing the partitions z0 and w0 from multinomial distributions
of parameters π and ρ respectively. Then, the entries of the table are gener-
ated by independent draws from p(xij |zi, wj ;αziwj ) and the apparent error rate

`item((z0,w0), h̃full(X)) is computed. The parameters α are updated by setting
a scale parameter by trial and error (dichotomy) as long as the apparent error
rate is not centered around the stipulated conditional risk, and the generation
process is repeated.

In the last step, with the table distribution parameters well calibrated, one
or more data tables complying with the specified conditional risk are supplied.
A table is generated as above, and its conditional risk is computed by Gibbs
sampling. If the latter does not match the prescribed conditional risk, the
generation and evaluation process is repeated; otherwise, the table, its series
of Gibbs labels and the distribution parameters are recorded in the repository.
Rejection sampling can be severe (70%) for small tables, but the rejection rate
decreases with table size.
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6. Conclusion

The co-clustering literature, in spite its forty years long history, has not yet
come out with a consensual way of benchmarking algorithms. When adopting
a classification view of co-clustering, the primary objective is to recover the row
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and column partitions. The objective assessment of the intrinsic difficulty of a
co-clustering problem is then complicated, due to the absence of supervision,
and because co-clustering considers data tables as statistical units, which is
atypical in statistical learning. Regarding the first point, simulated data are
particularly worthwhile, but we surveyed a number of hurdles on the road of
the controlled design of artificial data tables, owing to the dual nature of each
dimension of the data table, that has no equivalent in one-way clustering.

We began this study by arguing that the relevant statistical should be the
data table. Then, we proposed suitable losses, Bayes’ rules and risks, and
described the difficulties related to the estimation of these quantities. The losses
we consider are simple, to avoid distraction from the important specificities of
co-clustering, such as the hardness of computing the optimal partitions for a
fully known model.

Then, we showed that, other parameters of the distribution being equal, the
table size had important outcomes regarding Bayes’ error rates. This size is
thus an important feature of table distributions, which is not described by the
distribution of their entries.

Finally, we exemplified the artificial data design process with latent-
block models. Our simulation protocol allows to produce co-clustering prob-
lems whose controlled difficulty is valuable in the analysis of the behavior
of the algorithms pertaining to co-clustering. Our repository, available at
http://www.hds.utc.fr/coclustering, gathers the first publicly available se-
ries of co-clustering problems with assessed intrinsic difficulty.

In addition to the proposal of classification-based evaluation measures and
the simulation protocol, this paper exhibits two interesting phenomena whose
interest goes beyond the simulation setup, in particular in regard to the eval-
uation of learning algorithms. First, we illustrated that, for small data tables,
having a single ground truth labelling may not sufficient, because many diverse
sets of labels are about equally probable for the observed data table. The his-
tograms provided in Section 4.4 show that ignoring this diversity can result in
extremely noisy evaluations. This phenomenon, which also impairs clustering
to a much lesser extent, has outcomes at different levels. For practitioners, it
means that several truths are possible: a series of plausible results should be dis-
played to the end-user. For evaluators of learning algorithms, it means that the
true partition is not likely to be optimal, whatever the measure: performances
based on this unique partition are not gold standards.

Second, we uncover a phenomenon already known and studied for unipartite
graph models such as the stochastic block model (Celisse et al., 2011): if the
number of clusters is fixed, the asymptotic Bayes’ error of co-clustering goes
to zero as the data table dimensions go to infinity. This theoretical analysis
has yet to be transposed to the co-clustering setup, in particular to determine
the growth rates of the number of rows and columns that will drive Bayes’
error to zero. If our conjecture is correct, it implies that the row and column
distributions converge to non-overlapping densities, which in turns implies that
co-clustering boils down to a pair of independent row and column clusterings.
Hence, to reveal structures that cannot be extracted by one-way clustering, the
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joint partitioning of large data tables should consider a large number of clusters.
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Appendix A. Proofs of Propositions

All propositions concern similar rows and column properties. The proofs are
provided here with regard to the row property since the proof proceeds likewise
for the column one. We first state a useful lemma whereby Propositions 1 and 2
can be derived in a few lines.

Lemma 1. Under Assumptions 1 and 2, conditionally on the column labels w,
the variables (x1, z1), . . . , (xn, zn) are independent. Likewise, conditionally on
the row labels z, the variables (x1, w1), . . . , (xd, wd) are independent.

p(X, z|w) =
∏
i

p(xi, zi|w)

p(X,w|z) =
∏
j

p(xj , wj |z) .

Proof.

p(X, z|w) = p(X|z,w)p(z|w)

=
∏
i

p(xi|zi,w)p(z|w) (Assumption 2)

=
∏
i

p(xi|zi,w)
∏
i

p(zi|w) (Assumption 1)

=
∏
i

p(xi, zi|w)

Note that Lemma 1 implies the conditional independence of rows and
columns:

p(X|w) =
∏
i

p(xi|w)

p(X|z) =
∏
j

p(xj |z) .

Appendix A.1. Proposition 1

Proposition 1 states that, under Assumptions 1 and 2, we have:

p(z|w,X) =
∏
i

p(zi|w,xi)

p(w|z,X) =
∏
j

p(wj |z,xj) .
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Proof.

p(z|w,X) =
p(X, z|w)

p(X|w)

=

∏
i p(xi, zi|w)∏
i p(xi|w)

(Lemma 1)

=
∏
i

p(zi|w,xi)

Appendix A.2. Proposition 2

Proposition 2 states that, under Assumptions 1 and 2, we have:

p(zi|z\i,w,X) = p(zi|w,xi)
p(wj |z,w\j ,X) = p(wj |z,xj) ,

Proof. Let X\i denote the subtable of X formed by all rows except row i:

p(zi|z\i,w,X) = p(zi|z\i,w,xi,X\i)

=
p(xi, zi|X\i, z\i,w)

p(xi|X\i, z\i,w)

=
p(xi, zi|w)

p(xi|w)
(Lemma 1)

= p(zi|xi,w)
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